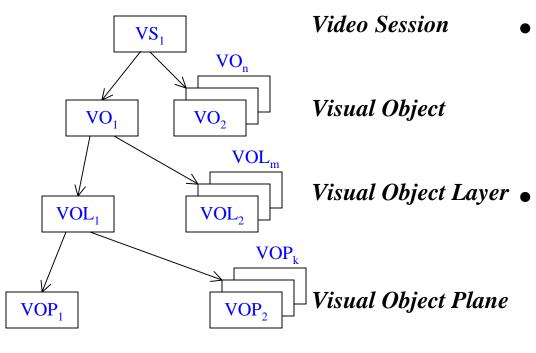
MPEG-4: Fallacies and Paradoxes

Zhen Fang

University of Utah School of Computing Electrical and Computer Engineering

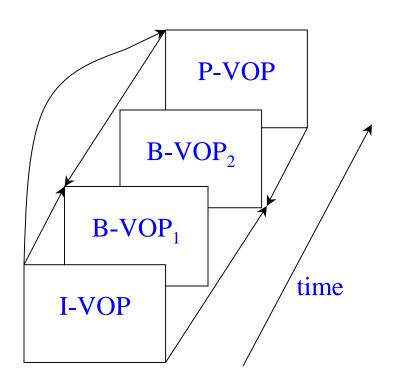
Sally A. McKee

Cornell University


MPEG-4: Multimedia for Our Time

- Internet streaming video, Digital TV, mobile multimedia, broadcast ...
- Improved from MPEG-1 and MPEG-2
 - Interactivity
 - Streaming
- You have been using it!
 - .avi, .wmv, .asx, .mp4, ...
 - Few of them are true MPEG-4.

MPEG-4 Visual: a Hierarchical Structure


 Object-based approach enables interactivity and streaming

Each VOP contains motion, shape and texture data

Motion Estimation

- Spatial and temporal compression
- OoO processing increases memory and computation demand

Popular Assumptions on MPEG4 Visual

- Memory-streaming
- Bus-bandwidth limited
- Memory latency sensitive
- Adversely affected by larger image sizes
- Adversely affected by a greater number of images or layers
- These are all intuitive and plausible!

Experiment Environment

- SGI O2 (R12000, 1MB L2C)
- SGI Onyx VTX (R10000, 2MB L2C)
- SGI Onyx2 InfiniteReality (R12000, 8MB L2C)

L1 data cache	32KB, 2-way, 32B/line, LRU, WB	
L2 unified cache	2-way, 128B/line, LRU, WB	
System bus	64 bits, 133MHz, split transaction	
main memory	4-way interleaved SDRAM,	
	680MB/s sustained, 800MB/s peak	

Experiment Environment (2)

- ISO reference software
 - by EU ACTS Project MoMuSys
- MIPS cc compiler at -O3
- SGI SpeedShop performance analysis package
 - 2 hardware performance counters
 - 32 virtual counters via multiplexing
- 720x576 / 1024x768 pixels, 8 bits/pixel, 30 frames/s

Fallacy #1: Data References in MPEG-4 Stream

		R12000	R10000	R12000
enc	L1C miss rate	0.08%	0.08%	0.08%
	L1C line reuse	1254.3	1287.9	1310.8
dec	L1C miss rate	0.37%	0.38%	0.35%
	L1C line reuse	268.7	264.1	288.1

(720x576 pixels, 1 VO, 1 VOL)

Fallacy #2: MPEG-4 Is DRAM Latency Sensitive

		R12000	R10000	R12000
		1MB L2C	2MB L2C	8MB L2C
enc	L2C miss rate	32.62%	15.70%	7.28%
	DRAM time	2.4%	1.3%	0.2%
	prefetch L1 miss	41.4%	n/a	36.0%
dec	L2C miss rate	39.27%	19.31%	10.72%
	DRAM time	11.6%	6.6%	1.5%
	prefetch L1 miss	36.4%	n/a	45.2%

(720x576 pixels, 1 VO, 1 VOL)

Fallacy #3: MPEG-4 Is Hungry for Bus Bandwidth

		R12000	R10000	R12000
		1MB L2C	2MB L2C	8MB L2C
enc	L1-L2 b/w	4.5	4.2	4.0
	L2-DRAM b/w	4.9	2.7	1.9
dec	L1-L2 b/w	18.9	18.3	22.4
	L2-DRAM b/w	24.3	14.9	9.8

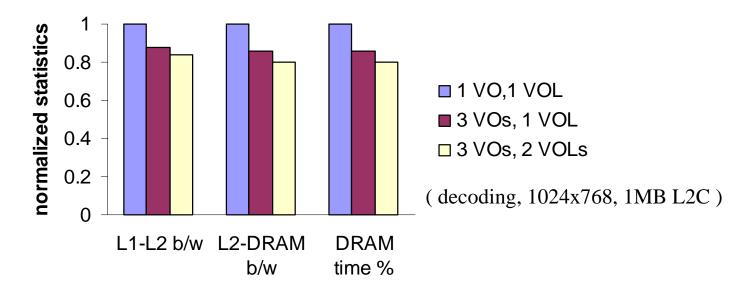
in MB/s

(720x576 pixels, 1 VO, 1 VOL)

Fallacy #4: MPEG-4 Memory Performance Degrades w/ Growing I mage Size

- When image size is increased to 1024x768 (1.9X)
 - Memory performance remains almost the same
 - In several cases it actually *improves*:

	720x576	1024x768
L2C miss rate	39.27%	36.48%
DRAM b/w (MB/s)	24.3	24.0
DRAM stall time	11.6%	11.3%


(decoding, L2C=1MB, 1 VO, 1 VOL)

Fallacy #5: MPEG-4 Memory Performance Degrades w/ Increased Number of VOs and VOLs

- As the number of VOs and VOLs is increased
 - Memory performance does not change noticeably
 - It can get better:

Conclusions and Future Work

- MPEG-4 visual has good memory performance
 - High L1C hit ratios
 - High cache line reuse
 - Low bus b/w requirements
 - Low main-memory stall time
- Future Work
 - With SIMD ISA extensions
 - Other representative platforms
 - IA32, IA64, Power4, ...
 - Software simulation

