Constructing a Non-Linear Model with Neural Networks for Workload Characterization

Richard M. Yoo

Han Lee

Kingsum Chow

Hsien-Hsin S. Lee

Georgia Tech

Intel Corporation

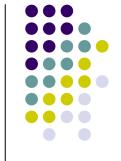
Intel Corporation

Georgia Tech

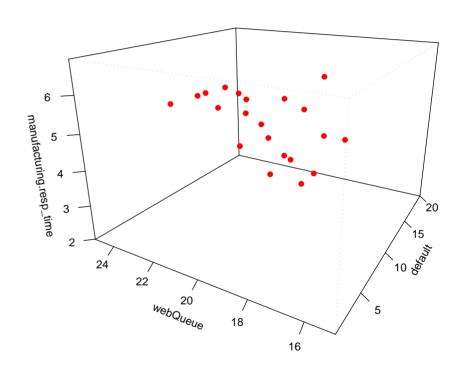
Java Middleware Tuning

- Workload tuning
 - Finding the best workload configuration that brings about the best workload performance
 - configuration parameters: things we have control over
 - thread pool size, JVM heap size, injection rate, etc.
 - performance indicators: workload behavior in response to configurations
 - response time, throughput, etc.
- Java middleware tuning
 - Inherently complicated due to its nonlinearity

Nonlinear Workload Behavior



- The performance of a workload does not necessarily improve or degrade in a linear fashion in response to a linear adjustment in its configuration parameters
 - Hard to predict the performance change with respect to configuration changes
 - Lottery



Sample data distribution from a case study

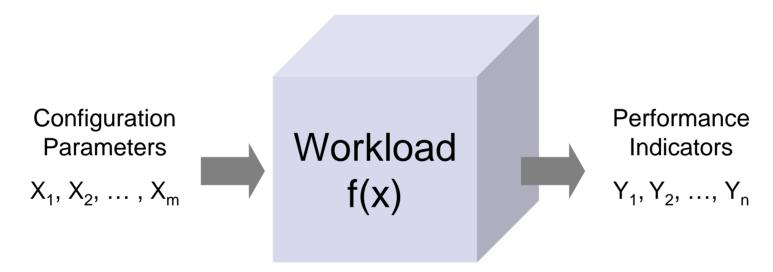
Nonlinear Behavior in Java Middleware

 Dominant in Java middleware behavior due to its stacked execution environment

Application
Java Application Server
Java Virtual Machine
Operating System
Hardware

A stacked execution environment

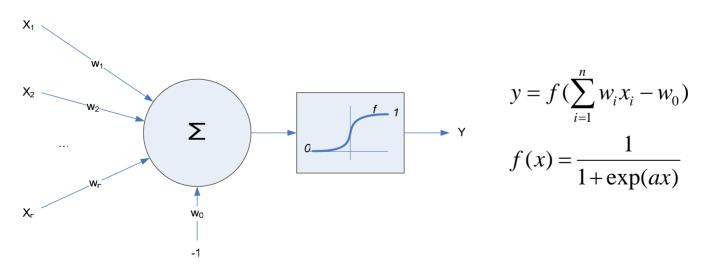
 Regard the relation between the m configuration parameters and the n performance indicators as an m -> n nonlinear function



Map the workload tuning problem to a nonlinear function approximation problem

Function Approximation with Neural Networks

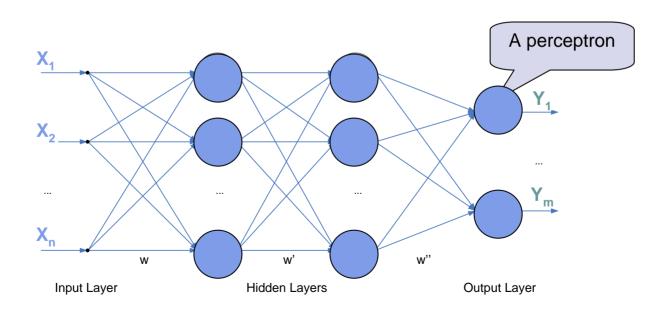
- Artificial Neural Networks
 - A network of many computational elements called perceptrons
 - Weighted sum of inputs + nonlinear activation function
 - Learn the input by adjusting the weights to minimize the prediction error for Y
 - Depending on the structure and organization of perceptrons, many neural networks exist



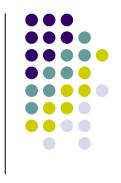
A typical structure of a perceptron

Multi-Layer Perceptrons (MLPs)

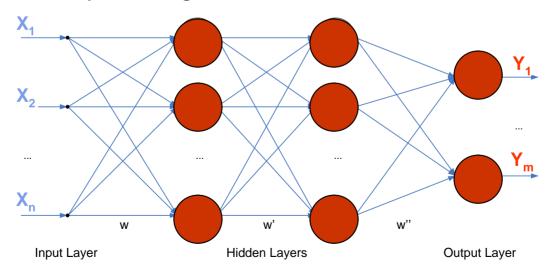
- A stacked layer of multiple perceptrons
- A feed-forward network
 - Output from previous layer feeds the next layer



A 3-layer perceptron

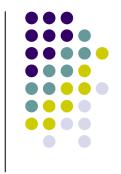


- Backpropagation algorithm
 - By far the most popular method (standard)
 - Propagate the error of outer layer back to inner layer (blaming)
 - Each layer calculates its local error that contributed to the outer layer's error
 - Adjust each layer's weight to minimize the local error



8

- Among many neural network configurations,
 - MLPs excel in function approximation
 - Can approximate any nonlinear function
 - MLPs are widely used in function approximation and pattern classification area

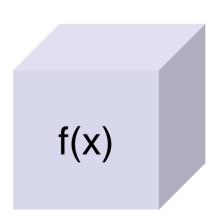


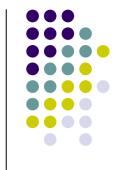
- Neural networks are trained with samples
- Each sample is a tuple comprised of configuration parameter settings and the corresponding performance indicator values

$$(X_1, X_2, ..., X_m, Y_1, Y_2, ..., Y_n)$$

Present each performance sample to the neural network multiple times

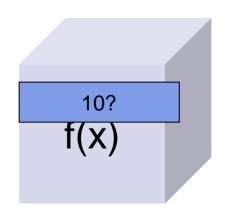
X ₁ Thread pool size	X ₂ JVM heap size	Y ₁ Response time
10	256	13
12	256	10
10	512	9
12	512	7

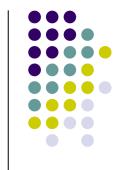




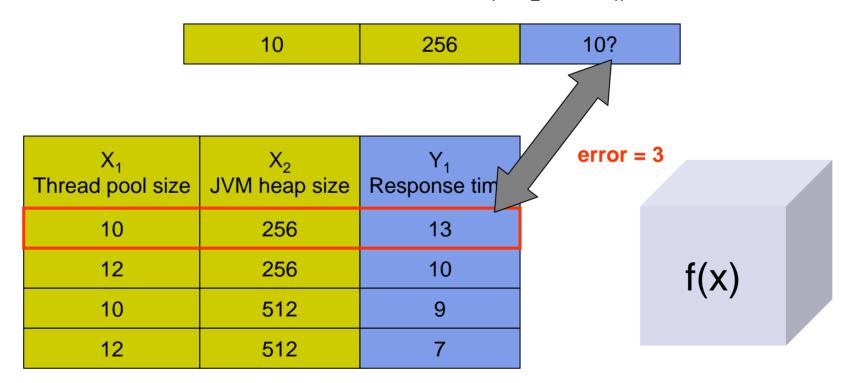
 When presented with each samples, based on the previous knowledge, neural network tries to predict the performance indicator Y'₁, Y'₂, ..., Y'_n by observing given configuration settings X₁, X₂, ..., X_m

X ₁ Thread pool size	X ₂ JVM heap size	Y ₁ Response time
10	256	13
12	256	10
10	512	9
12	512	7





 At the same time, neural network learns the samples by minimizing the error between predicted performance values (Y'₁, Y'₂, ..., Y'_n) and the actual performance values (Y₁, Y₂, ..., Y_n)



- Process repeats over the entire samples, multiple times
- Training stops when a desired minimum error bound is reached

	X ₁ Thread pool size	X ₂ JVM heap size	Y ₁ Response time			10?	
	10	256	13	0			
,	12	256	10		> f(x)		
	10	512	9		. (71)		
	12	512	7				

Model Validation

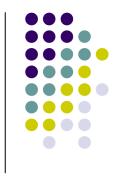
- Model validity = predictability over unseen samples
 - Quantify the model validity by prediction accuracy over unseen samples
- K-fold cross validation
 - Guarantee that the sample set represents the entire sample space

```
divide the samples into k sets;
for (i in 1:k) {
   leave 1 set out;
   model.train( k - 1 sets);
   error[i] = model.error( 1 set that
   was left out);
}
average the error[];
```

Summary of Model Construction

- Collect performance samples with varying configurations
- 2. Train neural network with samples
- 3. Perform k-fold cross validation to validate the model

Workload



- J2EE 3-tier web service, modeling the transactions among a manufacturing company, its clients, and suppliers
- 4 configuration parameters
 - Thread count assigned to mfg queue
 - Thread count assigned to web queue
 - Thread count assigned to default queue
 - Injection rate
- 5 performance indicators
 - Manufacturing response time
 - Dealer purchase response time
 - Dealer manage response time
 - Dealer browse autos response time
 - Throughput
 - ∴ 4 -> 5 nonlinear function approximation

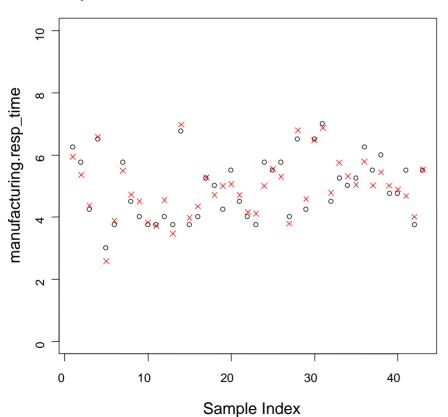
Model Construction

- Collected 54 data samples with varying configurations
- Train the neural network with R statistical analysis toolkit
 - Single hidden layer
 - 100 hidden nodes
 - Maximum iteration = 120
- Performed 5-fold cross validation over the model

Model Validation: Manufacturing Response Time

o: actual value

x: predicted value



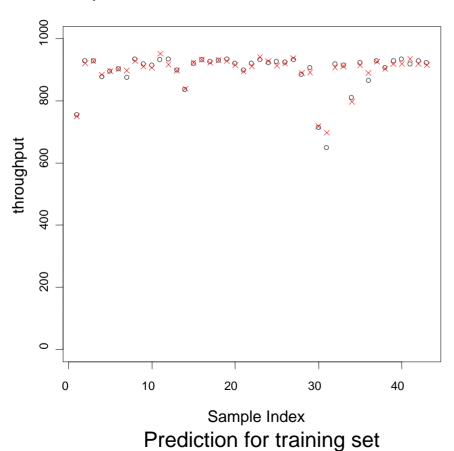
10 manufacturing.resp_time ω X 9 \sim 0 10 2 6 8 Sample Index

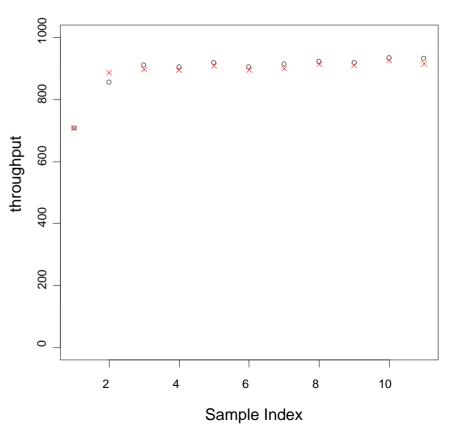
Prediction for training set

Prediction for validation set

o: actual value

x: predicted value





Prediction for validation set



Average prediction error for validation set

Trial	Manufacturing Response Time	Dealer Purchase Response Time	Dealer Manage Response Time	Dealer Browse Autos Response Time	Effective Transactions per second
1	3.30%	10.10%	5.70%	9.50%	0.10%
2	1.50%	7.30%	2.70%	4.20%	0.30%
3	4.50%	8.90%	3.30%	5.00%	0.20%
4	4.00%	12.60%	12.60%	11.30%	0.10%
5	1.40%	11.30%	10.70%	6.40%	0.20%
Average	3.00%	10.00%	7.00%	7.30%	0.20%

Harmonic mean of model accuracy = 95%

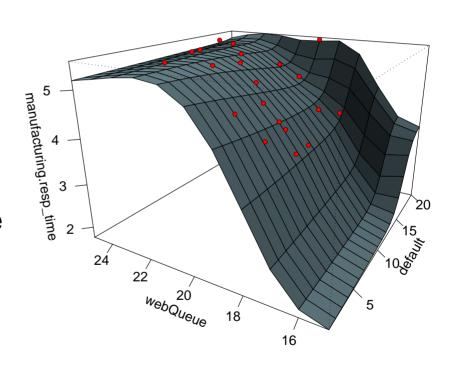
Model Application

- Now we have an accurate and valid model
- Utilize this model to further improve the understandings in the workload
 - Project the model to 3D by fixing 2 out of 4 configuration parameters
- 3 typical behaviors appeared repetitively
 - Case of Parallel Slopes
 - Case of Valleys
 - Case of Hills

(560, x, 16, y)

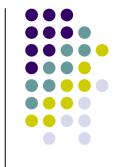
Parallel Slopes

- Injection rate and manufacturing queue fixed at (560, 16)
- Z axis: manufacturing response time
- X, Y axis: web queue and default queue value



Tuning default queue value has less effect on response time once web queue value is fixed

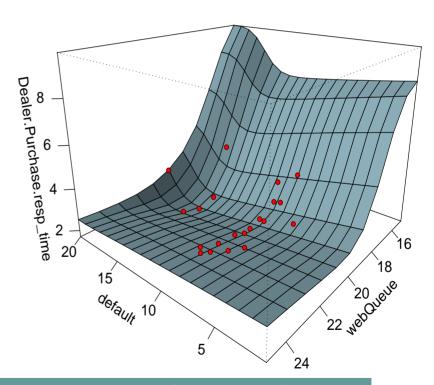
Case of Valleys



(560, x, 16, y)

Valleys

- Injection rate and manufacturing queue fixed at (560, 16)
- Z axis: dealer purchase response time
- X, Y axis: default queue and web queue value
- Valleys formed at (default, webQueue) = (15, 18)



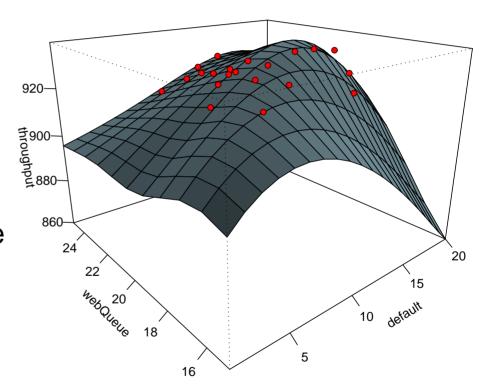
Default queue value and web queue value should be adjusted in a coherent way to stay in the 'valley'

Case of Hills

(560, x, 16, y)

Hills

- Injection rate and manufacturing queue fixed at (560, 16)
- Z axis: throughput
- X, Y axis: web queue and default queue value



Default queue value and web queue value should be adjusted in a coherent way to stay on the 'hill'

Conclusion

 Devised a methodology that incorporates neural network to construct and validate a nonlinear behavior model

 Neural networks are an excellent tool to construct a nonlinear workload behavior model

 Significant insights can be gained by analyzing these constructed models

Georgia Tech MARS lab

http://arch.ece.gatech.edu/



- Neural network models perform interpolation among samples
- Cannot be used for extrapolation
 - Cannot predict the performance for the configuration that is far apart from the training data
- Known limitation of MLP